10. E. Fischer, Ber., 20, 821 (1887).

11. M. L. Wolfrom, F. Shafizadeh, J. O. Wehrmüller, and R. K. Armstrong, J. Org. Chem., 23, 571 (1958).

SYNTHESIS OF 3-AMINOBENZO-1,2,4-TRIAZINE 4-OXIDES

E. Yu. Belyaev, L. M. Gornostaev, and V. A. Levdanskii

UDC 547.567.5 +547.87

o-Quinone monooxime guanylhydrazones, obtained from copper complexes of o-nitrosophenols, are cyclized to give the previously unknown 3-aminobenzo-1,2,4-triazine 4-oxides.

1,2-Naphthoquinone oxime guanylhydrazones, obtained from α -nitroso- β -naphthol or β -nitroso- α -naphthol and aminoguanidines, are readily cyclized to the corresponding 2-aminonaphtho[1,2-I]-1,3,4-triazine 1-oxides and 3-aminonaphtho[2,1-I]-1,2,4-triazine 4-oxides [1]. Compounds of this sort were not formed from o-nitrosophenol and 4-nitrosoresorcinol. However, we did synthesize o-benzoquinone monooxime guanylhydrazones from copper complexes of o-nitrosophenols [2]. These guanylhydrazones were easily converted to the previously undescribed 3-aminobenzo-1,2,4-triazine 4-oxides (I-IV, Table 1). Compound V was obtained from the readily accessible potassium salt of 2-nitroso-4-methylphenol and aminoguanidine sulfate without isolation of o-toluquinone monooxime guanylhydrazone, which is unstable at high temperatures.

The IR spectra of triazines I-V contain intense absorption bands of the triazine C = N bond (1620-1650 cm⁻¹ [3] and the N-O bond of heterocyclic compounds (1350-1370 cm⁻¹) [4]. Bands of an NH₂ group are present at 3000-3400 cm⁻¹ [4].

The slow conversion of the stable copper complexes to the less stable free o-nitrosophenols, which react with excess aminoguanidine, promotes the formation of the guanylhydrazones.

EXPERIMENTAL

3-Aminobenzo-1,2,4-triazine 4-Oxides (I-IV). A 10-mmole sample of the copper complex of o-nitro-sophenol was shaken at room temperature for 100 h with 70 ml of water, 40 ml of alcohol, 10 ml of 56%

TABLE 1. 3-Aminobenzo-1,2,4-triazine 4-Oxides

Com-	R	R′	mp, °C (aqueous ethanol)	Empirical formula	Foun	hal	Calc		λ _{max} , nm	lg e	Yield,
I III IV V	H CH ₃ H CH ₃ H	Cl Cl Br Br CH ₃	214—215 215 222—223 225 211	$C_7H_5N_4CIO$ $C_8H_7N_4CIO$ $C_7H_5N_4B_7O$ $C_8H_7N_4B_7O$ $C_8H_8N_4O$	28,4 26,5 23,1 21,6 31,9	17,8 16,9 32,7 31,5	28,4 26,6 23,2 21,9 31,8	18,1 16,9 33,1 31,4 —	260 260 260 265 255	4,70 4,68 4,59 4,66 4,71	75 92 73 80 76

Siberian Technological Institute, Krasnoyarsk. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 11, pp. 1571-1572, November, 1975. Original article submitted February 7, 1975.

©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

HNO₃, and 3.44 g (25 mmole) of aminoguanidine nitrate. The resulting yellow precipitate was removed by filtration and washed with a small amount of water. The yields of o-benzoquinone monooxime guanyl-hydrazone nitrates ranged from 80 to 95%. A 1.5-g sample of the appropriate hydrazone was heated with stirring in 150 ml of water to 70°, after which the hot mixture was filtered, and the filtrate was heated at 80-90° for 15-20 min. The filtrate was then cooled and filtered to give I-IV.

6-Methyl-3-aminobenzo-1,2,4-triazine 4-Oxide (V). A 1.75-g (10 mmole) sample of the potassium salt of 2-nitroso-4-methylphenol was heated with stirring at 50° with 25 ml of water, 25 ml of alcohol, and 2.64 g (10 mmole) of aminoguanidine sulfate for 15 min, after which the mixture was heated at 80° for 30 min. The product was isolated by filtration of the cooled mixture. Found: C 54.3; H 4.7%. $C_8H_8N_4O$. Calculated: C 54.5; H 4.5%.

LITERATURE CITED

- 1. F. J. Lalor and F. L. Scott, J. Chem. Soc., 1034 (1969).
- 2. C. Cronheim, J. Org. Chem., 12, 1 (1947).
- 3. O. P. Shvaika and V. N. Fomenko, Zh. Organ. Khim., 10, 2431 (1974).
- 4. L. Bellamy, New Data on the IR Spectra of Complex Molecules [Russian translation], Mir, Moscow (1971).